Math 261

Spring 2023
Lecture 45

Feb 19-8:47 AM

Integration with subs.:
$\int(2 x+1)^{2} d x$
Method I: $\quad \int(2 x+1)^{2} d x=\int\left(4 x^{2}+4 x+1\right) d x$

$$
\begin{align*}
& =\frac{4 x^{3}}{3}+\frac{4 x^{2}}{2}+x+c \tag{du}\\
& =\frac{4}{3} x^{3}+2 x^{2}+x+C
\end{align*}
$$

Method II: Let $u=2 x+1$
$\int(2 x+1)^{2} d x=\int u^{2} \frac{d u}{2}=\frac{1}{2} \int u^{2} d u$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{u^{3}}{3}+C \\
& =\frac{1}{6}(2 x+1)^{3}+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \cos x^{2} \cdot x d x \\
& \text { Let } u=x^{2} \rightarrow d u=2 x d x \rightarrow \frac{d u}{2}=x d x \\
& \int \cos x^{2} \cdot x d x
\end{aligned}=\int \cos u \frac{d u}{2} .
$$

$$
\begin{aligned}
& \int\left(x^{2}+5 x+8\right)^{4} \cdot(2 x+5) d x \\
& u=x^{2}+5 x+8=\int u^{4} d u \\
& d u=(2 x+5) d x \quad=u^{5}+
\end{aligned}
$$

verify:

$$
\begin{aligned}
& \frac{d}{d x}\left[\frac{1}{5}\left(x^{2}+5 x+8\right)^{5}+C\right]= \\
& \frac{1}{5} \cdot 5\left(x^{2}+5 x+8\right)^{4} \cdot(2 x+5)+0= \\
& \underbrace{\left(x^{2}+5 x+8\right)^{4} \cdot(2 x+5)}_{\text {Integrand }}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{\sin _{u^{4} x}^{4}}{\cos x d x} . \\
& \text { Let } u=\sin x \rightarrow \text { Find } d u=\cos x d x \\
& \int u^{4} d u=\frac{u^{5}}{5}+C=\frac{1}{5} \sin ^{5} x+C
\end{aligned}
$$

$$
\begin{aligned}
& d u=\cos x^{2} \cdot 2 x \cdot d x \\
& \int u^{4} d u=\frac{u^{5}}{5}+c=\frac{1}{5} \sin ^{5} x^{2}+c
\end{aligned}
$$

May 8-9:02 AM

Evaluate $\int_{-1}^{2}\left[x^{2}\right] d x$ using Reimann Sums.

$$
\begin{aligned}
& \begin{array}{l}
\int_{a}^{b}[f(x)] d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x \text { where } \\
\quad \Delta x=\frac{B-a}{n} \text { and } x_{i}=a+i \Delta x \\
a=1 \quad x_{i}=a+i \Delta x \\
b=2 \\
\Delta x=\frac{2-1}{n}=\frac{1}{n} \quad=1+i \cdot \frac{1}{n}=1+\frac{i}{n}
\end{array} \\
& f\left(x_{i}\right)=f\left(1+\frac{i}{n}\right)=\left(1+\frac{i}{n}\right)^{2}=1+\frac{2 i}{n}+\frac{i^{2}}{n^{2}} \\
& f\left(x_{i}\right) \cdot \Delta x=\left(1+\frac{2 i}{n}+\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n}=\frac{1}{n}+\frac{2 i}{n^{2}}+\frac{i^{2}}{n^{3}} \\
& \begin{aligned}
\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x= & \sum_{i=1}^{n}\left[\frac{1}{n}+\frac{2 i}{n^{2}}+\frac{i^{2}}{n^{3}}\right] \\
& =\sum_{i=1}^{n} \frac{1}{n}+\sum_{i=1}^{n} \frac{2 i}{n^{2}}+\sum_{i=1}^{n} \frac{i^{2}}{n^{3}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{1}{n}+\sum_{i=1}^{n} \frac{2 i}{n^{2}}+\sum_{i=1}^{n} \frac{i^{2}}{n^{3}} \\
& =\frac{1}{n} \cdot \sum_{i=1}^{n} 1+\frac{2}{n^{2}} \sum_{i=1}^{n} i+\frac{1}{n^{3}} \\
& =\frac{1}{\not x} \cdot \not x+\frac{2 x}{n^{2}} \cdot \frac{n(n+1)}{2}+\frac{1}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =1+\frac{n^{2}+j u n k}{n^{2}}+\frac{2 n^{3}+j u n k}{6 n^{3}} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=\lim _{n \rightarrow \infty}\left[1+\frac{n^{2}+j u n k}{n^{2}}+\frac{2 n^{3}+j u n k}{6 n^{3}}\right] \\
& \left.\int_{1}^{2} x^{2} d x=\frac{x^{3}}{3}\right]_{1}^{2}=1+1+\frac{1}{6}=2+\frac{1}{3}\left[2^{3}-1^{3}\right]=\frac{1}{3} \cdot 7=\frac{7}{3} \\
& \underbrace{\sim}_{2} \underset{2}{f(x)=x^{2}} \underset{\sim}{f}
\end{aligned}
$$

May 8-9:17 AM

$$
\begin{aligned}
\left.\int_{-1}^{1} x^{3} d x=\frac{x^{4}}{4}\right]_{-1}^{1} & =\frac{1}{4}\left[1^{4}-(-1)^{4}\right] \\
& =\frac{1}{4}(1-1)=0 \\
\left.\int_{0}^{1} x^{3} d x=\frac{x^{4}}{4}\right]_{0}^{1} & =\frac{1}{4}\left(1^{4}-0^{4}\right)=\frac{1}{4} \\
& f(x)=x^{3}
\end{aligned}
$$

May 8-9:35 AM
find the area below $\left(f(x)=x^{4}+1\right.$, above x-axis from $x=-1$ to $x=1$.

$$
\begin{aligned}
& \text { even } f_{\text {unction }} \\
& f(-x)=f(x) \\
& \text { symmetric } \\
& \text { with respect to } \\
& \text { Y-axis. } \\
& +x]\left.\right|_{0} ^{1} \\
& =2\left(\frac{1}{5}+1\right) \\
& =2 \cdot \frac{6}{5}=\frac{12}{5}
\end{aligned}
$$

$$
A=\int_{-1}^{1}\left(x^{4}+1\right) d x=2 \int_{0}^{1}\left(x^{4}+1\right) d x=\left.2\left[\frac{x^{5}}{5}+x\right]\right|_{0} ^{1}
$$

$$
=2\left[\left(\frac{1^{5}}{5}+1\right)-\left(\frac{0^{5}}{5}+0\right)\right]=2\left(\frac{1}{5}+1\right)
$$

```
find the area below \(f(x)=x \sin x^{2}\),
above \(x\)-axis from \(x=0\) to \(x=\sqrt{\pi}\).
\(f(0)=0 \cdot \sin 0^{2}=0.0=0\)
\(f(\sqrt{\pi})=\sqrt{\pi} \cdot \sin (\sqrt{\pi})^{2}=\sqrt{\pi} \cdot \sin \pi=\sqrt{\pi} \cdot 0=0\)
    \(0 \leq x \leq \sqrt{\pi} \rightarrow Q I\) or \(Q \mathbb{I}\)
    \(x \operatorname{Sin} x^{2} \rightarrow\) Positive in QI or QII.
```


